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This paper examines a synthesis of adaptive mesh methods with the use of sym-
metry to study a partial differential equation. In particular, it considers methods
which admit discrete self-similar solutions, examining the convergence of these to
the true self-similar solution as well as their stability. Special attention is given to
the nonlinear diffusion equation describing flow in a porous medium.
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1. Introduction

(a) Preliminaries

When analysing a parabolic partial differential equation (PDE) of the general form

ut = f(x, u, ux, uxx) (1.1)

we often seek changes of the dependent variable u and spatial variable x to new
variables v, y such that a (locally invertible) transformation exists of the form

v ≡ v(t, x, u), y ≡ y(t, x, u). (1.2)

If v and y are chosen appropriately, then often the equation (1.1) can be simplified,
making the solution easier and emphasizing asymptotic effects. This process was
systematized early in this century by Lie who observed that many of the celebrated
PDEs of mathematical physics were invariant under the action of a symmetry group
and that groupings of variables that were invariant under the action of the group
made effective transformed variables. A description of this approach is given in Olver
(1986). Solutions of the PDE which are themselves invariant under the action of the
group are termed similarity solutions and when expressed in terms of the transformed
variables often satisfy much simpler equations than the original PDE—for example,
the similarity solution may simply be the solution of an ordinary differential equation
(ODE). The importance of similarity solutions lies in their ease of calculation, the
fact that they often act as attractors for the more general solutions of the PDE and
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1048 C. J. Budd and others

the universality of their occurrence in important physical problems. Reviews of the
role played by similarity solutions in continuous problems are given in Dresner (1983),
Bluman & Cole (1974), Barenblatt (1996) and on discrete problems in Dorodnitsyn
(1993).

A good example is the linear heat equation

ut = uxx (1.3)

invariant under the action of the scaling transformation

t→ λ2t, x→ λx, u→ λαu, λ > 0.

Taking new coordinates,

u = t−1/2v, x = t1/2y, s = log(t), (1.4)

and substituting into (1.3) gives

vs = L(v) ≡ 1
2v + 1

2yvy + vyy. (1.5)

Equation (1.5) has a steady-state solution v̄(y) satisfying L(v̄) = 0 given by

v̄(y) = Ae−y
2/4.

This corresponds to a time-evolving solution of (1.4). The corresponding analysis of
the solution and of its stability is somewhat easier for the transformed equation than
for the original.

This short discussion gives a strong hint that an appropriate numerical method for
solving (1.3) is one which can itself be transformed into a discretization of (1.5). The
purpose of this paper is to give an analysis of such schemes applied to the nonlinear
diffusion equation. To introduce this, suppose that we discretize (1.3) by using a
method of lines formulation with a time-varying mesh Xi(t), for which Ui(t) is an
approximation to u(Xi(t), t). Such a procedure is described, for example, in Huang
et al. (1994). Following Huang et al. (1994), to allow for the effects of the motion of
the mesh, we discretize (1.3) expressed in the Lagrangian form

du

dt
− ∂u

∂x

dx

dt
=

∂2u

∂x2 . (1.6)

Provided that the mesh is sufficiently regular, a second-order accurate discretization
of this equation is then given by

U̇i −
(

Ui+1 − Ui−1

Xi+1 −Xi−1

)
Ẋi =

(
Ui+1 − Ui
Xi+1 −Xi

)
−
(

Ui − Ui−1

Xi −Xi−1

)
1
2(Xi+1 −Xi−1)

, (1.7)

where dots denote differentiation with respect to t. Now, suppose that the time-
varying mesh is uniform with respect to i so that

Xi+1(t)− 2Xi(t) + Xi−1(t) = 0 or Xi+1(t)−Xi(t) = H(t). (1.8)

The system (1.7), (1.8) then admits a discrete solution of the form

Ui(t) = t−1/2Vi(s), Xi(t) = t1/2Yi(s), (1.9)

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
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and on substituting into (1.7) we have (after some manipulation)

V̇i −
(

Vi+1 − Vi−1

Yi+1 − Yi−1

)
Ẏi = 1

2Vi +
(

Vi+1 − Vi−1

Yi+1 − Yi−1

)
1
2Yi +

(
Vi+1 − Vi
Yi+1 − Yi

)
−
(

Vi − Vi−1

Yi − Yi−1

)
1
2(Yi+1 − Yi−1)

,

(1.10)
where dots now denote differentiation with respect to s. The latter equation is pre-
cisely a second-order accurate discretization of the Lagrangian form of the trans-
formed equation (1.5). Now, suppose that this latter equation has a steady-state
solution V̄i, Ȳi. Such a steady state is a discretization of the steady-state solution v̄(y)
of (1.5) on the (non-uniform) mesh given by Ȳi. The analysis of the time-dependent
solutions of (1.7) then reduces to the analysis of the equilibrium solutions of (1.10),
which is in principle a much simpler task. Thus (V̄i, Ȳi) is a discrete self-similar
solution of (1.10).

The essence of a dynamic adaptive method to solve an evolutionary problem is
the inclusion of equations, in addition to (1.7), which specify the evolution of the
mesh points Xi, and this process underlines most adaptive techniques for solving
evolutionary problems. There are many possible ways of doing this, some of which
are described in Huang et al. (1994), but a clear guideline is given by the above
calculation. Namely, the mesh points should be allowed to evolve in such a manner
that for the above problem the solution

Xi(t) = t1/2Yi

with Yi constant should always be admitted as a possible solution of the equations
describing the mesh evolution. Note that using a non-adaptive mesh with Xi constant
automatically prevents this possibility. In this paper we explore methods of evolving
the mesh that permit the possibility.

Traditionally, adaptive numerical methods have been hard to analyse because of
the close coupling between the mesh and the solution. The solution Ui(t) and the
mesh Xi(t) then become a large dynamical system which may, potentially, have com-
plex dynamics unrelated to that of the underlying PDE. However, if the adaptive
mesh in some way reflects the underlying dynamics of the PDE, then there is the
possibility that the dynamics of the coupled mesh–solution system can actually be
simplified. We have already seen this with our example of the heat equation, where we
have reduced the study of a dynamic problem to a static problem. The main purpose
of this paper is to extend the above observation to show that if adaptive numerical
methods are used to solve a class of problems, then very accurate long-time dynamics
of the solution can be recovered. A secondary feature of PDEs governed by a sym-
metry group is the existence of various conservation laws, which play a major role in
determining the evolution of the system. Again, in this paper we demonstrate that
an effective adaptive method can also recover discrete analogues of the conservation
laws—which cannot hold if a non-adaptive method is used.

To focus the study of these issues, we concentrate in this paper on the study of
the behaviour of adaptive numerical methods to study the porous-medium equation
(PME), which is a nonlinear diffusion equation of the form

ut = (uux)x = 1
2(u2)xx, where u > 0, (1.11)

taking
u(x, t) = 0 if |x| is sufficiently large. (1.12)
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1050 C. J. Budd and others

These equations have a rich dynamics (see Vasquez 1992) including group invariance,
associated conservation laws and solutions with sharp interfaces. Indeed there are
well-defined interface points s−(t) and s+(t) such that u > 0 iff s−(t) < x < s+(t).
We describe some of this dynamics in § 2. We aim to show that an adaptive scheme,
designed to be invariant under the action of the symmetry group of the underlying
equation, admits a discrete self-similar solution which approximates the underlying
self-similar solution. Provided that the discrete system obeys a suitable conservation
law, these solutions correctly capture the dynamics of the underlying PDE, allowing
convergence results to be established. We demonstrate this by constructing a centred
finite-difference approximation Ui(t) to u(x, t), which uses a moving mesh Xi(t) with
0 6 i 6 N + 1 such that X0(t) approximates s−(t) and XN+1 approximates s+(t).
Then, as N →∞ and for large t, we show by formal asymptotic methods that

max
i
|Ui(t)− u(Xi, t)| ∼ t−1/3

(
C1

log(N + 1)
(N + 1)2 +O(1/t1/3)

)
, (1.13)[ |XN+1 −X0|

N + 1

N+1∑
i=0

(Ui(t)− u(Xi, t))2
]1/2

∼ t−1/6
(

C2
1

(N + 1)2 +O(1/t1/3)
)

,

(1.14)

t−1/3|X0 − s−(t)| = t−1/3|XN+1 − s+(t)| ∼ C3
log(N + 1)
(N + 1)2 +O(1/t1/3). (1.15)

Here C1, C2 and C3 are constants which we estimate explicitly.
The layout of the remainder of this paper is as follows. In § 2 we briefly describe

some of the dynamics of the porous-medium-equation problem and discuss the role
played by conservation laws and similarity solutions. In § 3 we describe an adaptive
method for solving (1.11) based upon equidistribution of the mesh points. In this
derivation we consider the effect of conservation laws and the existence of self-similar
solutions. We show that enforcing conservation leads to a scheme which has the
correct asymptotics for large times but which gives suboptimal convergence as the
mesh is refined. Our discussion will be illustrated by an exact solution. In § 4 we
show how the equations so derived can be transformed so that they have a discrete
self-similar solution as a steady state. In § 5 we construct such a solution and discuss
the (suboptimal) convergence of this to the true self-similar solution as the number
N of mesh points is refined. In § 6 we look at the stability as t→∞ of this solution,
showing that it determines (correctly) the long-time dynamics of the underlying
discrete system. In § 7 we combine these results to obtain the convergence estimates
(1.13)–(1.15). Finally, in § 8 we present some numerical results which support our
theoretical derivations.

2. The porous-medium equation and self-similar solutions

(a) Existence

The PME (1.11) arises in the study of the diffusion of gas through a porous medium
under the action of the Darcy law relating velocity to pressure gradient (Dresner
1983). It also arises as a model of the swarming of various insect species (Murray
1989). More of the many applications and a summary of the analytic properties
are given in Vasquez (1992). For this discussion we concentrate on three qualitative
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features: solutions with compact support, conservation laws and scaling laws and
associated self-similar solutions. There is now a fairly complete existence theory for
the solutions of (1.11) based upon the application of semigroup theory and of the
maximum principle. In particular, suppose that

u(0, x) ≡ u0(x) > 0

and that u0(x) ∈ L1(R) and has compact support. Then a global (weak) solution
u(x, t) > 0 of (1.11) exists for all t > 0 which also has compact support. If the
support is the set S(t) and if t1 < t2, then

S(t1) ⊂ S(t2). (2.1)

In the simplest case, S(0) is an interval, and then S(t) is an interval for all t > 0,
and u(x, t) has an interface at the two points s−(t) < s+(t) such that u(s−, t) =
u(s+, t) = 0, u(x, t) = 0 if x 6 s− or x > s+ and u(x, t) is non-zero in a right
neighbourhood of s− or a left neighbourhood of s+. The interfaces propagate with a
finite speed given by

ds±
dt

= −u(s±, t)x. (2.2)

The regularity of the function u(x, t) has been studied in some detail, and it is known
that, under the above conditions, u is Lipschitz in a neighbourhood of the interface.

(b) Conservation laws

Two important conserved quantities of the solution are its integral and centre of
mass. Suppose that a solution exists and

I(t) =
∫ ∞
−∞

u dx > 0. (2.3)

Then
dI

dt
=
∫ ∞
−∞

ut dx =
∫ ∞
−∞

(uux)x dx = 0.

Thus I is a constant. Similarly, if x̄ is the scaled centre of mass

x̄ =
∫ ∞
−∞

xu dx, (2.4)

then
dx̄

dt
=
∫ ∞
−∞

xut dx =
∫ ∞
−∞

x(uux)x dy = −
∫ ∞
−∞

uux dx = −1
2

∫ ∞
−∞

(u2)x dx = 0.

Thus x̄ is also a constant. We shall see in § 3 that both of these functions are also
conserved with an appropriate adaptive numerical scheme.

(c) Scaling laws and self-similar solutions

Suppose now that we introduce a map from the original system (u, x, t) to a new
system (û, x̂, t̂) given by the (group) transformation

û = λαu, x̂ = λβx, t̂ = λt, (2.5)
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where the constant λ is arbitrary; then we may rewrite (1.11) as a differential equation
in (û, x̂, t̂). Significantly, the equation in the new coordinates is identical to the
original provided that

α− 2β + 1 = 0. (2.6)

The original system is then scaling invariant and (2.5) is a scaling (or affine) trans-
formation. The set of all such transformations as λ varies over (0,∞) has a group
structure. Suppose further that a solution of (1.11) exists which is itself invariant
under these transformations so that

λαu(x, t) = u(λβx, λt). (2.7)

Such a solution is an example of a self-similar solution of the form described in § 1.
To find such a solution we seek coordinates that are invariant under the action of
the transformation (2.5). Such coordinates are given by y and v(y), where

y = x/tβ, v(y) = t−αu, (2.8)

so that

u(x, t) = tαv(x/tβ). (2.9)

From (2.3),

I =
∫ ∞
−∞

u(x, t) dx = tα
∫ ∞
−∞

v(x/tβ) dx = tα+β
∫ ∞
−∞

v(y) dy.

As I is constant we deduce that

α + β = 0, β = 1
3 . (2.10)

Observe that this conservation law crucially determines the long-term dynamics of
the solution. Substituting the expression (2.8) into the original PDE gives

0 = 1
3v + 1

3yvy + (vvy)y. (2.11)

Integrating (2.11) and applying the boundary conditions we have that v satisfies the
conservation law

0 = 1
3yvy + (1

2v2)y. (2.12)

This equation has a one-parameter family of solutions such that if v(y) is a solution,
then so is

λ−2v(λy), (2.13)

where λ is arbitrary. The differential equation (2.12) was solved independently by
Baranblatt and Pattle (Dresner 1983) to give the one-parameter family of solutions

v(y) = (a− 1
6y2)+, (2.14)

where a is a constant given by specifying the value of I and v(y) has support [−L, L]
with

L =
√

6a.

A simple calculation gives

a3 = 3
32I2 and L3 = 9

2I. (2.15)
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As the choice of the origin for both time t and space x was arbitrary, corresponding
to (2.14) we have the family of self-similar solutions of (1.10) for general t0 and x0:

ū(x, t, a, x0, t0) = (t− t0)−1/3
(

a− (x− x0)2

6(t− t0)2/3

)
+
. (2.16)

More generally, set

u(x, t) = t−1/3v(x/t1/3, s) where s = log(t). (2.17)

Substituting for v(y, s) then gives

vs = 1
3v + 1

3yvy + (vvy)y ≡ (1
3yv + (1

2v2)y)y, (2.18)

which has the self-similar solution (2.14) as a steady state. Observe that∫ ∞
−∞

v dy (2.19)

is a constant of the evolution. The self-similar solutions would be of academic interest
only were it not for the following convergence result.

Theorem 2.1. Let u(x, t) > 0 be an arbitrary solution of (2.18) with integral I
and centre of mass x0. Then if ū(x, t; a, x0, t0) is the self-similar solution with the
same integral and centre of mass, then for all t0 we have

t1/3‖u− ū‖L1 → 0 as t→∞. (2.20)

Equivalently, the PDE (2.18) has as a global attractor the solution of the ODE (2.11)
with the same first integral.

Proof . Proofs of this result use either the maximum principle or Lyapunov func-
tions and are given in Kamenomostskaya (1973), Vasquez (1992) and Ralston (1984).

�

3. Moving mesh discretizations and associated conservation laws

(a) The underlying scheme

A good adaptive numerical method for solving the PME is one which can deal with
arbitrary (positive) initial data but which has the correct asymptotic behaviour over
long time-scales. This can be achieved at the cost of using a method which uses
a first-order approximation for the boundary terms and which has a suboptimal
convergence rate. To derive the method, we assume that u(x, t) is approximated by
Ui(t) at the point Xi(t), where Ui and Xi are chosen to give a consistent discretization
of (1.11) expressed in Lagrangian form so that

du

dt
− ∂u

∂x

dx

dt
= (uux)x. (3.1)

For this calculation we assume that the support of u(x, t) is the interval (s−(t), s+(t)),
which itself needs to be determined as part of the solution. We exploit this by placing
mesh points Xi(t), i = 0, . . . , N + 1 only within this interval such that

s−(t) ≈ X0(t) < X1(t) < X2(t) < · · · < XN (t) < XN+1(t) ≈ s+(t) (3.2)
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and

U0(t) = UN+1(t) = 0, for all t. (3.3)

To develop the scheme, we use three principles: (i) the scaling invariance of the dis-
crete equation; (ii) the existence of a discrete conservation law; and (iii) the regularity
of the solution at the interface. Using a central difference discretization of (3.1) for
points 1 6 i 6 N interior to the interface gives

U̇i −
(

Ui+1 − Ui−1

Xi+1 −Xi−1

)
Ẋi

=
2

(Xi+1 −Xi−1)

(
1
2(Ui+1 + Ui)

(
Ui+1 − Ui
Xi+1 −Xi

)
− 1

2(Ui + Ui−1)
(

Ui − Ui−1

Xi −Xi−1

))
.

(3.4)

This system is invariant to the scaling action of the symmetry group given by

t→ λt, Ui → λαUi, Xi → λβXi, ∀α, β.

In this formulation, we have placed no condition upon the location or movement of
the mesh points. A natural first step is to determine X0 and XN+1 by discretizing
the condition (2.2) on the speed of the interfaces. As a first approximation we use a
first-order discretization to give

Ẋ0 = − U1

(X1 −X0)
and ẊN+1 =

UN
(XN+1 −XN )

. (3.5)

From a sufficiently regular mesh, this discretization is to a lower order than that for
the function Ui and consequently has a larger truncation error. We use it as it allows
a discrete conservation law.

(b) Conservation laws

(i) Conservation of the first integral

An important feature of the system (3.4), (3.5) is that it admits a discrete form
of conservation of the first integral of the solution.

Theorem 3.1. Suppose that IN is a discrete first integral of u given by

IN =
N∑
i=0

1
2(Ui + Ui+1)(Xi+1 −Xi). (3.6)

Then if Ui and Xi satisfy (3.4), (3.5), IN is a constant of the evolution.

Proof . From (3.6) we have

dIN
dt

= 1
2

N∑
i=0

(U̇i + U̇i+1)(Xi+1 −Xi) + (Ui+1 + Ui)(Ẋi+1 − Ẋi).

Now, (3.4) can be written in the form

U̇i(Xi+1 −Xi−1)− Ẋi(Ui+1 − Ui−1) = (Di −Di−1), (3.7)
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where

Di = (Ui+1 + Ui)
(

Ui+1 − Ui
Xi+1 −Xi

)
.

Thus,
N∑
i=1

U̇i(Xi+1 −Xi−1)− Ẋi(Ui+1 − Ui−1) = (DN −D0)

=
(

(UN+1 + UN )
UN+1 − UN
XN+1 −XN

− (U1 + U0)
U1 − U0

X1 −X0

)
= −UNẊN+1 + U1Ẋ0

using (3.3), (3.5). Thus
N∑
i=1

U̇i(Xi+1 −Xi−1)− Ẋi(Ui+1 − Ui−1) + UNẊN+1 − U1Ẋ0 = 0.

However, after some manipulation, the expression above is simply 2 dIN/dt, proving
the result. �

Note how the conservation of the mass is given by the first-order accurate descrip-
tion of the movement of the interface nodes. As an alternative to this scheme we
might consider a second-order accurate scheme for the boundary conditions. Specifi-
cally, suppose that we take the simplest case of a uniform mesh with Xi+1−Xi = H
and use the scheme

Ẋ0 = −
(

4U1 − U2

2H

)
, ẊN+1 =

(
4UN − UN−1

2H

)
.

Defining IN as above, we have

İN = 1
2UN

(
ẊN+1 − UN

H

)
− 1

2U1

(
Ẋ0 +

U1

H

)
=

1
4H

((2UN − UN−1) + (2U1 − U2)).

If the solution is ultimately convex (a property satisfied by the similarity solution),
then 2UN −UN−1 and 2U1−U2 are positive, and hence IN increases for large times.
We conclude that we cannot have conservation of mass and a second-order accurate
boundary condition in such a case.

As conservation of mass determines the long-time asymptotics of the solution, we
consider this the more important term to keep correct. Hence we use a less accurate
boundary condition than the interior condition.

(ii) Conservation of the centre of mass

For the discrete system we define the discrete centre of mass X̄N by

X̄N =
N∑
i=0

(Xi+1 −Xi)(XiUi + Xi+1Ui+1). (3.8)
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Provided that the mesh points satisfy
Xi+1 − 2Xi + Xi−1 = 0, ∀i,

then a similar calculation gives
dX̄N

dt
= 0. (3.9)

(c) Calculation of the mesh points

Now consider the motion of the mesh points interior to the support. The guiding
principle here is that the equations so derived should be invariant to scaling trans-
formations. In Budd et al. (1996a,b) and Budd & Collins (1998), a procedure for
doing this is derived for problems with singularities that have a scaling invariance.
It was proposed that the points should be equidistributed with respect to a monitor
function M which itself was scaling invariant. We follow this procedure in a simple
way here. Owing to the gentle nature of the evolution of the solution of the PME
and the result (3.9), we simply take M = 1, which gives

Xi+1 − 2Xi + Xi−1 = 0, i = 1, . . . , N,

which is invariant under scaling. Equivalently,
Xi+1 −Xi = H(t) = (XN+1 −X0)/(N + 1). (3.10)

Combining (3.4), (3.5) and (3.10) gives a system in which the unknowns are Ui for
i = 0, . . . , N + 1, X0 and XN+1, which is of the form

U̇i −
(

Ui+1 − Ui−1

2H

)
Ẋi = 1

2

(
U2
i+1 − 2U2

i + U2
i−1

H2

)
i = 1, . . . , N, (3.11)

U0 = UN+1 = 0, (3.12)

Ẋ0 = −U1/H, ẊN+1 = UN/H, H = (XN+1 −X0)/(N + 1). (3.13)
This system can be solved by using an ODE solution package such as DASSL (Petzold
1982). Our calculations use this, and we presume for the remainder of the analysis
in this paper that the ODEs can be solved exactly. It is worth noting, however,
that although very accurate, this package does not necessarily give a system which is
invariant to scalings in time. This property can be achieved by using instead an ODE
solver (such as the forward Euler method) in which the time-step ∆t is determined by
the solution. For example taking ∆t = U−3

N/2 will lead to a scaling invariant method.

(d) The dynamics when N = 2

By looking at an exact solution we now investigate some further elementary prop-
erties of this system.

Lemma 3.2. If N = 2, and (without loss of generality) I2 = 1 and X̄2 = γ, then
there are constants K, C such that

U1 = 1
2(t + C)−1/3 + K(t + C)−5/3, U2 = 1

2(t + C)−1/3 −K(t + C)−5/3, (3.14)

H = (t + C)1/3,

X1 = γ − 1
2(t + C)1/3 + K(t + C)−1,

X2 = γ + 1
2(t + C)1/3 + K(t + C)−1.

 (3.15)
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Proof . To derive this solution we use the conserved invariants

I2 = H(U1 + U2) ≡ 1, X̄2 = H(X1U1 + X2U2) ≡ γ.

Now,

Ẋ0 = −U1/H, Ẋ3 = U2/H, Ẋ3 = Ẋ0 + 3Ḣ

so that

3HḢ = U1 + U2 = 1/H.

Integrating this expression gives a constant C for which

H = (t + C)1/3, implying that U1 + U2 = (t + C)−1/3.

Rearranging X̄2 = γ gives

γ = 1
2H((X1 + X2)(U1 + U2) + (X1 −X2)(U1 − U2))

= 1
2(X1 + X2)− 1

2H2(U1 − U2);

moreover,
U2 − U1

H
= Ẋ0 + Ẋ3 = Ẋ1 + Ẋ2.

Thus, if a = X1 + X2 we have

2γ = a + H3ȧ = a + (t + C)ȧ

so that there is a constant K for which

a = 2γ +
2K

t + C
and hence U2 − U1 = −2K(t + C)−5/3.

Combining these results gives (3.14) and the values of K and C then follow from
the initial conditions. The values for X1 and X2 come from calculating X0 using the
interface motion condition. �

This solution has both features in common with, and significant differences from,
the solution of the underlying PDE. For large t it is clear that for arbitrary initial
data, H, U1 and U2 tend toward the discrete similarity solution

H = t1/3, U1 = U2 = 1
2 t−1/3, X2 = −X1 = 1

2 t1/3.

Indeed, for large t,
t1/3U1

t1/3U2

t−1/3H
t−1/3X1

t−1/3X2

 =


1/2
1/2
1
−1/2
1/2

+
γ

t1/3


0
0
0
1
1

− C

3t


1/2
1/2
−1
1/2
−1/2

+
K

t4/3


1
−1
0
1
1

+O(1/t2).

(3.16)

The behaviour above generalizes to the case of general N and motivates the analysis
in the next three sections. In contrast, if we reduce t toward the value −C, then
unless K = 0 the values Ui become opposite in sign and tend to infinity in absolute
magnitude. This behaviour is in marked contrast to that of the continuous case in
which the function tends towards a delta function in the same limit.
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4. The discrete self-similar solution

Motivated by the existence and the central role played by the self-similar solution
of the continuous problem, we now consider a self-similar solution of the discrete
problem given by (3.11)–(3.13). To construct equations for the discrete self-similar
solution, put

Vi(s) = t−αUi, Yi = t−βXi, Λ = t−βH, s = log(t), (4.1)

where we expect that Vi and Yi should tend to steady-state solutions, implying that

α− 2β + 1 = 0.

Furthermore,

IN =
N∑
i=0

HUi = tα+β
N∑
i=0

ΛVi. (4.2)

Hence, as IN is conserved,

α + β = 0 so that α = −1
3 , β = 1

3 .

Most significantly, the resulting scaling is identical to that obtained for the continuous
case and hence the discrete self-similar solution has the dynamics of the underlying
solution over long time-intervals. Observe further that if a higher-order discretization
of the boundary condition was used then IN would not be conserved and hence the
long-time dynamics of the discrete solution would be incorrect in this case. Of course
over a fixed time-scale the latter method would give (asymptotically in N) a more
accurate solution.

Substituting into (3.11)–(3.13) we obtain

V̇i −
(

Vi+1 − Vi−1

2Λ

)
Ẏi = 1

3Vi + 1
3

(
Vi+1 − Vi−1

2Λ

)
Yi + 1

2

(
V 2
i+1 − 2V 2

i + V 2
i−1

Λ2

)
,

(4.3)

together with the boundary conditions

V0 = VN+1 = 0 (4.4)

and

Ẏ0 + 1
3Y0 = −V1/Λ, ẎN+1 + 1

3YN+1 = VN/Λ. (4.5)

Here, dots denote differentiation with respect to s. Observe that (4.3) is a rescaling
of (3.11), which is a discretization of (1.11). It is also precisely the equation that
would be obtained by discretizing the rescaled equation (2.18). Thus the diagram in
figure 1 commutes.

The system (4.3) has a steady-state solution satisfying

0 = 1
3Vi + 1

3

(
Vi+1 − Vi−1

2Λ

)
Yi + 1

2

(
V 2
i+1 − 2V 2

i + V 2
i−1

Λ2

)
(4.6)

with
1
3Y0 = −V1/Λ, 1

3YN+1 = VN/Λ,

which is a consistent discretization of the ODE (2.11). Again we make the observation
that the rescaled form of the discrete equation is identical to the discretization of the
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Figure 1. A commuting diagram showing the relation between the original, discrete and
rescaled equations.

rescaled continuous equation. As in the continuous case, (4.6) has a one-parameter
family of solutions such that if (Vi, Yi) is a solution, then so is (λ2Vi, λYi) for arbitrary
λ > 0. To fix the solution we impose the value of the discrete integral which, without
loss of generality, we take to be one, so that

IN ≡ Λ

N+1∑
i=0

Vi = 1. (4.7)

The system (4.6) may be summed. To do this, set

αi =
1

6Λ
(Vi+1Yi + ViYi+1) and βi =

1
2Λ2 (V 2

i+1 − V 2
i ). (4.8)

Then (4.6) reduces to

αi − αi−1 + βi − βi−1 = 0, i = 1, . . . , N. (4.9)

Applying the boundary conditions at i = 0, N +1 and separating equations we then
have

αi + βi = 0, i = 0, . . . , N, (4.10)

so that
1
6(Vi+1Yi + ViYi+1) +

1
2Λ

(V 2
i+1 − V 2

i ) = 0, i = 0, . . . , N, (4.11)

which is a consistent discretization of (2.12). The numerical self-similar solution is
given by the solution of (4.11) for i = 0, . . . , N together with the boundary conditions
given in (4.4) and the condition (4.7). We note that the identity (4.11) automatically
includes the boundary conditions (4.5). Numerical solutions of these equations can
be found readily.
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We now identify two key issues in our study of the system (4.3): (i) how well does
the steady solution satisfying (4.11) converge to the solution of (2.12) as N → ∞;
and (ii) is such a steady state globally (or locally) stable? A combination of the
answers to these two questions gives us insight into the convergence of the numerical
algorithm, and we investigate them in the next two sections.

5. Convergence of the discrete self-similar solution as N →∞
We now investigate the convergence of the solution (Vi, Yi) of the equations of the
previous section to the true self-similar solution v(y) as N increases. This calculation
includes an estimate of the accuracy of the approximation to the support of the self-
similar solution. Before we do this we observe that in order to obtain a scheme which
conserves the first integral we had to use a lower-order approximation of the solution
at the interface. As a consequence we observe a suboptimal convergence rate, and a
full rigorous analysis of the convergence rate (based on the implicit function theorem)
proves difficult. Instead we use an error-analysis technique based upon the method
of matched asymptotic expansions. In this method two separate descriptions of the
numerical solution are derived, one valid in a region which does not include the
interface and a second valid in a region which does include the interface. These two
solutions are then matched in a region for which both are valid.

To calculate the discrete self-similar solution we have determined both the point
values Vi and the mesh points Yi. To compare such a discrete self-similar solution Vi
with the true self-similar solution v(y), we presume that IN = 1 and I = 1, so that
v(y) = (a− 1

6y2) if −L 6 y 6 L with

L =
√

6a = (9
2)1/3, a = ( 3

32)1/3

from (2.15). Now set

λ = 2L/(N + 1), vi = v(−L + iλ), and yi = −L + iλ

so that

yi = −L + iλ = L

(
2i

N + 1
− 1
)

= λ(i− 1
2(N + 1)) (5.1)

and

vi = v(yi) = 1
6λi(2L− iλ) =

4a

N + 1
i

(
1− i

N + 1

)
. (5.2)

We can then compare Vi with vi and Yi with yi and establish the following formal
proposition.

Formal proposition 5.1. If N is odd, then

(i) V(N+1)/2 − v(N+1)/2 ∼ α

(N + 1)2 , (5.3)

(ii) max
i

(Vi − vi) ∼ 2a log(N + 1)
(N + 1)2 , (5.4)

(iii) Yi ∼ yi

(
1 +

δ − log(N + 1)
(N + 1)2

)
, (5.5)
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where

α = 61/3(7
6 − log(2)) = 0.860 442 . . . ,

δ = 6−2/3(7− log(6)) + 2a(log(a)− γ) = 0.336 006 . . .

and γ is Euler’s constant.

Observe that Vi > vi and YN+1 < L.

Formal derivation. The discrete solution (Vi, Yi, Λ) satisfies the conservation equa-
tion

1
3Λ(ViYi+1 + Vi+1Yi) + (V 2

i+1 − V 2
i ) = 0. (5.6)

Now set

Vi = vi + wi, Yi = yi + zi and Λ = λ + µ,

where wi, zi and µ are all small, and let T be the truncation error defined by

T ≡ 1
3λ(viyi+1 + vi+1yi) + (v2

i+1 − v2
i ). (5.7)

Linearizing (5.6) we have to leading order

T + 1
3µ(viyi+1 + vi+1yi) + 2(wi+1vi+1 − wivi)

+ 1
3λ(vizi+1 + vi+1zi) + 1

3λ(wiyi+1 + wi+1yi) = 0. (5.8)

Substituting the expressions for vi and yi into T gives

T = 16a2(2i−N)/(N + 1)4. (5.9)

To analyse this system we apply the method of backward error analysis by considering
the limit of N →∞ and λ = 2

√
6a/(N + 1)→ 0. In this limit the equation (5.7) is

a consistent discretization of a differential equation satisfied by functions w(y) and
z(y) which have point values wi and zi, with a truncation error that is asymptotically
negligible as N →∞. By analysing the solutions of this equation we can then deduce
the leading-order behaviour of wi and zi. Dividing by λ and setting

µ/λ = θ,

where θ is to be determined, we obtain in the limit

8a2(2i−N)√
6a(N + 1)3

+ 2
3θvy + 2(wv)y + 2

3vz + 2
3wy = 0. (5.10)

Now, yi = λ(N + 1− 2i) and Yi = Λ(N + 1− 2i) so that

Yi
yi

= 1 +
zi
yi

=
Λ

λ
= 1 +

µ

λ
= 1 + θ, (5.11)

giving

zi/yi = θ.

Moreover,

8a2(2i−N)√
6a(N + 1)3

=
8
√

6aa2

6a(N + 1)2

(
2i

N + 1
− 1 +

1
N + 1

)
=

4ay

3(N + 1)2 +O(1/(N + 1)3).
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Combining these results and considering leading-order terms only, we obtain
4
3θvy + 2(wv)y + 2

3wy = −4
3

ay

(N + 1)2 . (5.12)

Now,

2(wv)y + 2
3wy = 2(w(a− 1

6y2))y + 2
3wy = 2wy(a− 1

6y2)− 2
3wy + 2

3wy = 2vwy,

so that
4
3θvy + 2vwy = −4

3
ay

(N + 1)2 .

This equation has the exact solution

w = C − 1
3θy2 +

2a

(N + 1)2 log(a− 1
6y2), (5.13)

where C is a constant. Observe that w(y) is singular as y2 → 6a. Hence, the expres-
sion (5.13) fails to be valid in this limit. Instead it is the outer solution of an expres-
sion which is valid close to the boundary. To determine the value of C compare the
discrete sum to the integral of v. Thus

Λ

N+1∑
i=0

Vi = 1⇒ (λ + µ)
N+1∑
i=0

(vi + wi)

= 1⇒
(

λ
N+1∑
i=0

vi − 1
)

+ λ
N+1∑
i=0

wi + µ
N+1∑
i=0

vi = 0.

From the standard error analysis of the trapezium rule approximation we have that

λ
N+1∑
i=0

vi − 1 = − 1
(N + 1)2

and, to leading order in λ,

λ

N+1∑
i=0

wi =
∫ L

−L
w dy and µ

N+1∑
i=0

vi =
µ

λ
λ
∑

vi = θ

∫ L

−L
v dy = θ.

Hence, considering the limit of small λ we have

− 1
(N + 1)2 +

∫ L

−L
w dy + θ = 0.

Integrating the expression (5.13) and substituting for a gives∫ L

−L
w dy = 2LC − θ +

2a

(N + 1)2

∫ L

−L
log(a− 1

6y2) dy.

Combining results gives

2LC = − 2a

(N + 1)2

∫ L

−L
log(a− 1

6y2) dy +
1

(N + 1)2 .

Evaluating the integral and substituting the values of L, a we then have

C =
6−2/3(7− log(6))

(N + 1)2 ≡ κ

(N + 1)2 =
1.577 333 . . .

(N + 1)2 .
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Hence,

w(y) = −1
3θy2 +

κ

(N + 1)2 +
2a

(N + 1)2 log(a− 1
6y2). (5.14)

Observe then that
(N + 1)2w(0) = κ + 2a log(a) = α ≡ 61/3(7

6 − log(2)).

This is precisely the value taken by Vi − vi at i = 1
2(N + 1), giving the result (5.3).

To complete the derivation of formal proposition 5.1 we determine the value of θ
by looking at the contribution of the boundary terms. We concentrate on an analysis
of the behaviour of wi close to the left interface, fixing i and letting N →∞. To do
this we now derive the following proposition.

Formal proposition 5.2. In the limit of N →∞ we have

wi+1 = wi +
4a

(2i + 1)(N + 1)2 . (5.15)

Similar behaviour occurs close to the right interface.

Formal derivation. From the identity
16a2(2i−N)

(N + 1)4 + 2
3µ(viyi+1 + vi+1yi)

+ 1
3λ(wiyi+1 + wi+1yi) + 2(wi+1vi+1 − wivi) = 0, (5.16)

and (5.1), (5.2); then if i is fixed and N →∞, we have

− 16a2

(N + 1)3 − 2
3µ
√

6a
4a

(N + 1)
(2i + 1)− 1

3

√
6aλ(wi + wi+1)

+
8a

N + 1
((i + 1)wi+1 − iwi) = 0. (5.17)

Substituting for λ gives
16a2

(N + 1)2 = 8
3µ
√

6a(2i + 1) + 4a((2i + 1)wi+1 − (2i + 1)wi). (5.18)

Now, µ/λ = θ and we shall assume at present that
θ = o(1/(N + 1)) so that µ = o(1/(N + 1)2)

(in fact we show presently that θ = O(log(N +1)/(N +1)2). Making this assumption,
the asymptotic contribution of the terms involving µ to (5.18) is zero and we have
simply that

wi+1 = wi +
4a

(2i + 1)(N + 1)2

as required. �
This completes the derivation of formal proposition 5.2. Now we complete the

derivation of formal proposition 5.1.
As w0 = 0, if i is fixed, then in the limit of large N

wi =
4a

(N + 1)2

[
1 + 1

3 + · · ·+ 1
2i− 1

]
=

4a

(N + 1)2 [1
2 log(i) + log(2) + 1

2γ +O(1/i2)], (5.19)

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1064 C. J. Budd and others

where γ = 0.577 215 664 9015 is Euler’s constant.
Using (5.1) gives

i =
(N + 1)(yi + L)

2L
,

and substituting gives

wi = w(yi) =
2a

(N + 1)2 (log(yi + L) + log(N + 1)− log(2L))

+
4a

(N + 1)2 (log(2) + 1
2γ +O(1/i2)).

The limit of (5.14) as y → −L is then

w(y)→ −2aθ +
1

(N + 1)2 [κ + 2a log(2L)− 2a log(6)] +
2a

(N + 1)2 log(y + L).

If we now take i to be large but also have y + L small (for example, if N is large,
i ∼ √N and y + L ∼ 1/

√
N), then these two expressions for w(y) can be matched.

Indeed, in this case they agree to order 1/(N + 1)3 provided that

−2aθ +
1

(N + 1)2 [κ + 2a log(2L)− 2a log(6)]

=
2a

(N + 1)2 [log(N + 1)− log(2L) + 2 log(2) + γ].

Evaluating the terms in this expression we then have

θ = − log(N + 1)
(N + 1)2 +

κ + 2a(log(a)− γ)
(N + 1)2 =

δ − log(N + 1)
(N + 1)2 , (5.20)

where

δ = κ + 2a(log(a)− γ),

consistent with the earlier assumed bound on θ. This gives

w(y) = 1
3

(
log(N + 1)
(N + 1)2 −

δ

(N + 1)2

)
y2 +

κ

(N + 1)2 +
2a

(N + 1)2 log(a− 1
6y2).

(5.21)
This expression has a local minimum at y = 0 and a local maximum at

y = ±
√

6a

(
1− 1

log(N + 1)− δ

)
at which points we have

max(w) =
1

(N + 1)2

(
2a(log(N + 1)− (1 + δ)) + κ + 2a log

(
a

log(N + 1)− δ

))
.

(5.22)
For very large N this is asymptotically

max(w) =
2a log(N + 1)

(N + 1)2 ,

which gives (5.4). Finally, to show (5.5), the estimate for the error in the calculation
of the grid, we use (5.11) and the estimate for θ. �
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6. The stability of the discrete self-similar solution as t→∞
We now look at the second question raised in § 4, namely the stability in time of the
discrete self-similar solution.

The objective here is to look at the solution (Vi, Yi) of (4.6) constructed in § 5 as
a steady solution of the time-dependent problem (4.3) and to consider the stability
of this solution to small perturbations of Vi and of Yi. A study of the global stability
of this solution is desirable but proves difficult due to the lack of a good comparison
theorem for the adaptive methods. Instead we proceed by making an analysis of the
local stability of the system obtained by linearizing (4.3) about the steady solution, in
particular to find the dominant eigenvalues and eigenvectors of this linearization. We
conclude from our calculations that the numerical self-similar solution is (neutrally)
stable as t → ∞. This behaviour reflects that of the self-similar solution of the
underlying PDE.

Before making a detailed calculation we first exploit the action of the symmetry
group to calculate three of the eigenvalues of the linearization of (4.3) about the
self-similar solution. (Observe that as the differential and difference equations are
invariant under the action of the same symmetry groups, then the same eigenvalues
will be observed in both cases.) Suppose that V ≡ (Vi, Λ, Yi) is a steady (self-similar)
solution of (4.3). By the invariance of the underlying equation (3.11) to a translation
in time we have that for all C

((t + C)1/3t−1/3Vi, (t + C)−1/3t1/3Λ, (t + C)−1/3t1/3Yi)

is a solution of (4.3). As t→∞ this converges to V . Similarly, by the invariance of
(3.11) to translations in space, we have that for all D

(Vi, Λ, Yi + Dt−1/3)

is a solution of (4.3) converging to V . Finally, by invariance to scaling we have that
for all ε

((1 + ε)2Vi, (1 + ε)Λ, (1 + ε)Yi)

is also a solution of (4.3). This does not converge to V but is close to it for all
time showing that V is neutrally stable. Thus the group actions lead to infinitesimal
perturbations to V of the form

(Vi, Λ, Yi) +
D

t1/3
(0, 0, 1) +

C

3t
(Vi,−Λ,−Yi) + ε(2Vi, Λ, Yi). (6.1)

We now consider the full local stability of the steady-state discrete self-similar solu-
tion. To do this we denote the steady-state self-similar solution V by (V̄i, Λ̄, Ȳi) and
seek infinitesimal time-dependent perturbations of the form

(Vi, Λ, Yi) = (V̄i, Λ̄, Ȳi) + eµsz, s = log(t), (6.2)

for appropriate eigenvalues µ and eigenvectors z ≡ (ϕi, κ, Zi). From the above dis-
cussion we can already say that three values of µ and z are given by

(µ,z) = (0, (2V̄i, Λ̄, Ȳi)), (µ,z) = (−1
3 , (0, 0, 1)), (µ,z) = (−1, (V̄i,−Λ̄,−Ȳi)).

We now proceed to calculate further values of µ and z. To perform this calculation
it is useful to make a change of variables, which reduces the coupling between the
mesh and the solution. If we set

Wi = ΛVi and χ = Λ3, (6.3)
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then, from the conservation of IN ,
N+1∑
i=0

Wi = const. (6.4)

Recasting the equations (4.3) in terms of Wi, and expressing all derivatives with
respect to the variable s, we have

Ẇi = 1
3Wi + 1

2((Wi+1 −Wi−1)Ẏi + 2Λ̇Wi)

+
1

6Λ
(Wi+1 −Wi−1)Yi + 1

2((W 2
i+1 − 2W 2

i + W 2
i−1)/Λ3), (6.5)

which can be expressed as a difference formula so that

Ẇi = αi − αi−1 + βi − βi−1, (6.6)

where

αi =
1

2Λ
(Wi+1Ẏi + WiẎi+1) +

1
6Λ

(Wi+1Yi + WiYi+1),

βi =
1

2Λ3 (W 2
i+1 −W 2

i ).

 (6.7)

This is augmented by the boundary conditions
1
3Y0 + Ẏ0 = −W1/Λ2 and 1

3YN+1 + ẎN+1 = WN/Λ2. (6.8)

Linear interpolation between Y0 and YN+1 gives

αi =
1

2Λ3

[
Wi+1

(
i

N + 1
WN −

(
1− i

N + 1

)
W1

)
+ Wi

(
i + 1
N + 1

WN −
(

1− i + 1
N + 1

)
W1

)]
, (6.9)

and combining these results we have

Ẇi =
1
2χ

[ϕi − ϕi−1] and χ̇ = −χ +
3

N + 1
(W1 + WN ), (6.10)

where

ϕi ≡ 2χ(αi + βi) depends only upon Wi and not upon Λ.

The formulation (6.10) of (4.3) separates the role played by the mesh and the solution
on the mesh, and the local stability of these equations is more amenable to analysis.
The system (6.10) has as a steady state the solution

W̄i = Λ̄V̄i and χ̄ = Λ̄3.

Suppose now that we linearize (6.10) about this steady state. This gives a linear
system with Jacobian matrix J . A little calculation then shows that if A is the
N ×N matrix given by

Ai,j =
∂ϕi
∂Wj

− ∂ϕi−1

∂Wj
(6.11)
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evaluated at the steady state, then J is given by

J =


1
2χ̄

A 0

3
N + 1

0 · · · 0 3
N + 1

−1

 . (6.12)

Considering the small perturbation described in (6.2), suppose that J has an eigen-
value µ with corresponding (right) eigenvector [ei, 3Λ̄2κ]T such that ei = Λ̄ϕi + κV̄i.
Then

Ae = 2χ̄µe and (e1 + eN )/(N + 1)− Λ̄2κ = µΛ̄2κ.

Thus, either e = 0, µ = −1 or e is an eigenvector of A. This reduces the linear-
stability problem to a study of the eigenvalues of A alone.

The following results follow immediately from the observations at the beginning
of this section.

Lemma 6.1.

(i) The matrix J has an eigenvalue of −1 with a right eigenvector [0, 1]T.

(ii) The matrix A has a left null eigenvector [1, 1, . . . , 1] and a right null eigenvector
(W1, W2, . . . , WN ).

The matrix A inherits symmetries derived from the reflectional symmetry of the
self-similar solution in which V̄i = V̄N+1−i. These imply that it has either even
eigenvectors with ei = eN+1−i or odd eigenvectors with ei = −eN+1−i. For the odd
eigenvectors e1 + eN = 0, so that κ = 0 and the spacing Λ of the mesh does not
change—although the position Yi of the mesh does. The eigenvalues of A give all the
values of µ stated in (6.2) apart from µ = −1

3 and µ = −1. Numerically calculated
eigenvalues of A for N = 8, 16, 32 are given in table 1 together with an asymptotic
value derived in formal proposition 6.2 (below). Observe that all of the calculated
eigenvalues are real and negative, which strongly implies that the discrete self-similar
solution is stable. In § 8 we give numerical evidence which supports the conjecture
that the self-similar solution is globally asymptotically stable.

We do not yet have a rigorous proof of this result; however, strong evidence for it
is given by the following.

Formal proposition 6.2. Suppose that the values of µ are ordered such that
0 = µ0 > µ1 > · · · . Then in the limit of large N

µk → −1
6k(k + 1).

Note. For all N we have the three eigenvalues µ = 0,−1
3 ,−1, and the numerical

evidence strongly suggests that these are µ0, µ1, µ2.

Formal derivation. It is simplest to show this for the case of an odd eigenvector.
Here Λ does not change and we can put Zi = θ for all i. A similar argument gives
the more general case. Starting from

V̇i = 1
3Vi +

(Vi+1 − Vi−1)
2Λ

Ẏi +
(Vi+1 − Vi−1)

6Λ
Yi +

(V 2
i+1 − 2V 2

i + V 2
i−1)

2Λ2 ,
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Table 1.

N = 8 N = 16 N = 32 asymptotics

0.00000 0.00000 0.00000 0.00000
−1.74507 −1.90988 −1.97462 −2.00000
−2.60861 −3.00420 −3.23287 −3.33333
−3.69297 −4.17468 −4.69338 −5.00000
−5.25040 −5.57702 −6.31553 −7.00000
−7.26432 −7.36028 −8.08733 −9.33333
−9.66276 −9.58910 −10.12508 −12.00000
−12.41101 −12.23367 −12.53282 −15.00000

−15.25429 −15.35969 −18.33333
−18.62871 −18.59705 −22.00000
−22.34468 −22.22073 −26.00000
−26.39745 −26.21146 −30.33333
−30.78515 −30.55471 −35.00000
−35.50720 −35.24220 −40.00000
−40.56338 −40.26866 −45.33333
−45.95359 −45.63145 −51.00000

−51.32913 −57.00000
−57.36105 −63.33333
−63.72690 −70.00000
−70.42654 −77.00000
−77.45990 −84.33333
−84.82694 −92.00000
−92.52763 −100.00000
−100.56195 −108.33333
−108.92987 −117.00000
−117.63138 −126.00000
−126.66646 −135.33333
−136.03508 −145.00000
−145.73724 −155.00000
−155.77293 −165.33333
−166.14213 −176.00000
−176.84482 −187.00000

and substituting (6.2) gives (to leading order)

µϕi = 1
3ϕi + µθ

(V̄i+1 − V̄i−1)
2Λ̄

+
(ϕi+1 − ϕi−1)

6Λ̄
Yi

+
(V̄i+1 − V̄i−1)

6Λ̄
θ +

V̄i+1ϕi+1 − 2V̄iϕi + V̄i−1ϕi−1

Λ̄2 , (6.13)

with boundary conditions
1
3θ + µθ = −ϕ1/Λ̄, 1

3θ + µθ = ϕN/Λ̄, ϕ0 = ϕN+1 = 0. (6.14)

Now consider the limit of N → ∞. In this case Λ̄ → 0, and (as in § 5) we may set
ϕi = ϕ(Yi). In the limit, (6.13) becomes

µϕ = 1
3ϕ + 1

3yϕy + (vϕ)yy + θ(1
3 + µ)vy,

with boundary condition

θ(1
3 + µ) = −ϕy(−L) = −ϕy(L).
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Now substitute the limiting function v(y) = a− 1
6y2 to give

µϕ = ((a− 1
6y2)ϕy)y − 1

3θy(1
3 + µ).

This is a perturbation of Legendre’s equation. If k is odd and Pk(z) is the kth
Legendre polynomial defined on the interval [−1, 1] normalized such that Pk(1) = 1,
then a simple calculation gives

µ = −1
6k(k + 1), ϕ(y) = 1

3θL(Pk(y/L)− y/L).

This is the formal result required. �
Inspection of the tabulated values shows good agreement with the asymptotic

values for small values of k.

7. Convergence

Based upon the results of the previous section we now make some statements about
the convergence of the discrete solution of the original discretization of the PME
to the true solution of the PME. Suppose that we start with an initial function
u(x, 0) with integral I = 1 and centre of mass X̄ = 0 such that the support of
u(x, 0) is s−(0), s+(0). Now discretize u(x, 0) to give Ui(0) by sampling at equally
spaced points Xi, and set X0(0) = s−(0), XN+1(0) = s+(0). By standard results on
quadrature we have values A, B such that

IN = 1 +
A

(N + 1)2 +O(1/N4), X̄N =
B

(N + 1)2 +O(1/N4).

Following our stability calculations we can now presume that Ui and Xi when rescaled
tend toward the discrete self-similar solution so that

t1/3Ui = Vi +O(1/t) and t−1/3Xi = Yi +O(B/(N + 1)2t1/3) +O(1/t).

We also have that

t1/3u(Xi, t) = v(t−1/3Xi) +O(1/t) = v(Yi) +O(B/(N + 1)2t1/3) +O(1/t).

Combining these results gives the convergence result

t1/3(Ui(t)− u(Xi, t)) = Vi − v(Yi) +O(B/(N + 1)2t1/3) +O(1/t).

For large t the dominant error contribution thus comes from the term Ei ≡ Vi −
v(Yi). This we can estimate from the results of § 5. To do this we must compare like
functions. Observe that if Λ = t−1/3H, then to leading orders

Λ
N+1∑
i=0

Vi = IN = 1 +
A

(N + 1)2 .

To apply the analysis of § 5 we set

V̂i = I
−2/3
N Vi, Ŷi = I

−1/3
N Yi and Λ̂ = I

−1/3
N Λ.

Then (V̂i, Ŷi) satisfies the equations for the discrete self-similar solution and

Λ̂
N+1∑
i=0

V̂i = 1.
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Now, from § 5, V̂i = vi + wi with vi, yi and wi given by (5.1), (5.2) and (5.14).
Furthermore,

Yi = I
1/3
N Ŷi = yi(1 + θ)I1/3

N = yi

(
1 + θ + 1

3
A

(N + 1)2

)
,

so that

v(Yi) = v

(
yi

(
1 + θ + 1

3
A

(N + 1)2

))
= vi + yi

(
θ + 1

3
A

(N + 1)2

)
v′(yi)

= vi − 1
3θy2

i − 1
9

Ay2
i

(N + 1)2 .

Thus,

V̂i − v(Yi) = wi + 1
3θy2

i + 1
9

Ay2
i

(N + 1)2 .

But

V̂i =
(

1− 2
3

A

(N + 1)2

)
Vi = Vi − 2

3
A

(N + 1)2 Vi,

so to leading order

Vi − v(Yi) = wi + 1
3θy2

i + 1
9

Ay2
i

(N + 1)2 + 2
3

A

(N + 1)2 (a− 1
6y2
i )

= wi + 1
3θy2

i + 2
3

Aa

(N + 1)2 .

Using the outer expression (5.14) for wi, valid away from the interface, we then have

Ei =
1

(N + 1)2 (κ + 2a log(a− 1
6y2
i ) + 2

3Aa). (7.1)

The function Ei has a maximum at y = 0 where it equals

Emid ≡ 1
(N + 1)2 (α + 2a log(a) + 2

3Aa).

As |y| → L, Ei is negative and increases in absolute value, so that the largest error
occurs at the interface itself. At this point we have wi = 0 and y2

i = L2 = 6a so that
Ei ≡ Emax, where

Emax = 2θa + 2
3

Aa

(N + 1)2 =
2a

(N + 1)2 (δ − log(N + 1) + 1
3A). (7.2)

The two expressions (7.1), (7.2) thus give the forms of the scaled error at the midpoint
and at the interface. Observe that the dominant error at the interface is asymptoti-
cally proportional to log(N +1)/(N +1)2 and is independent of the initial conditions.
In contrast, the error at the midpoint is asymptotically proportional to 1/(N + 1)2

and depends strongly upon the initial conditions.
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Figure 2. Symmetric behaviour of Ui.

Figure 3. Symmetric behaviour of Wi.

We can also estimate the mean-square error of the calculation. Suppose that we
define the discrete L2 error by

‖Ui(t)− u(Xi, t)‖22 =
N+1∑
i=0

H(Ui − u(Xi))2. (7.3)

Then a simple calculation shows that to leading order we can estimate this by

t1/6‖Ui(t)− u(Xi, t)‖2 =

√∫ L

−L
E2 dy. (7.4)

Using the expression for E, all quadratures can be evaluated to give

t1/6‖Ui(t)− u(Xi, t)‖2 ≡ EL2 =
1

(N + 1)2

√
2.238 302 + 0.605 687A + 0.302 828A2.

(7.5)

Observe that the mean-square error scales as 1/(N + 1)2. In this it differs from
the mean-square error of the self-similar solution computed in § 5, which scales as
log(N + 1)/(N + 1)2.

8. Numerical results

In this section we consider three numerical calculations. Firstly, we look at the con-
vergence of the discrete self-similar solution to the true self-similar solution. Secondly,
we look at the stability of the discrete self-similar solution. Finally, we look at the
convergence of the numerical solution to the PDE.
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Figure 4. Symmetric behaviour of Xi.

Figure 5. Symmetric behaviour of Yi.

Figure 6. Convergence of the scaled solution.
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Figure 7. Convergence of the scaled mesh.

Figure 8. Asymmetric behaviour of Wi.

Figure 9. Asymmetric behaviour of Yi.
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Figure 10. Convergence of asymmetric Wi.

Figure 11. Convergence of asymmetric Y1.

(a) Convergence of the self-similar solution

We first consider the convergence of the discrete self-similar solution Vi to the
point values vi of the true self-similar solution. To do this we take N = 31, 63, 127
and find the solution of the nonlinear system (4.11) using the Powell hybrid solver
SNSQE. We then calculate Sa = V(N+1)/2 − v(N+1)/2 and Sb = maxi |Vi − vi| and
compare these values with the asymptotic values Smid and |Smax| given by (5.3) and
(5.22), respectively. The resulting values are as follows:

N Sa Smid Sb |Smax|
31 0.000837 0.000840 0.001706 0.001718
63 0.000210 0.000210 0.000533 0.000539

127 0.000053 0.000053 0.000163 0.000164

.

The agreement between the asymptotic and numerical estimates is very good indeed,
giving us great confidence in the validity of the asymptotic approach.

(b) Stability

We now give results of some computations of the system (4.3) for fixed N letting
t → ∞. For convenience we keep N = 8 fixed throughout. The ODEs arising were
solved using DASSL with a solution tolerance of 10−10. In all computations the
self-similar solution was found to be globally stable.
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Example 8.1. For our first computation we take as initial values
{Ui} = 9

24{1, 2, 1, 2, 2, 1, 2, 1} and {X0, X9} = {−1, 1}.
These data are symmetric, and we have I8 = 1 and X̄ = 0. In figures 2 and 3 we plot
the values of Ui and Wi = HUi as functions of t for 0 6 t 6 100, and in figures 4
and 5 the mesh and scaled mesh Xi and Yi = (t+1)−1/3Xi. Here we scale with t+1
rather than with t to avoid problems when t = 0. Observe that Wi very rapidly tends
towards a constant value, whereas Yi takes rather longer to converge. In figures 6 and
7 we plot log |W1−W̄1| and log |Y1−Ȳ1|, respectively, as functions of log(t+1), where
W̄ and Ȳ now refer to the steady self-similar solution. Observe that each graph is
close to linear, implying that the linear-stability results of § 6 are appropriate. The
gradient of the first graph is very close to −1. This is as predicted and is due to
the arbitrary nature of the choice of time origin. In contrast, the second graph has a
gradient of −2.68 corresponding to the eigenvalue µ4 with a corresponding symmetric
eigenvector.

Example 8.2. For our second computation we take the asymmetric initial data
{Ui} = 1

4{1, 2, 3, 4, 5, 6, 7, 8} and {X0, X9} = {1, 2},
for which again I8 = 1 but X̄ 6= 0. The values of Wi and Yi are plotted in figures 8
and 9 and the convergence to the steady state examined in figures 10 and 11, which
correspond directly to figures 6 and 7. Observe in this case that Yi converges much
more slowly to the steady state. Indeed the gradient of the curve in figure 10 is pro-
portional to −1/3 due to the arbitrary choice of the origin for the spatial coordinate.
The rate of convergence of Wi is also slower, with gradient −1.74507, corresponding
to the eigenvalue µ3 with an odd eigenvector.

(c) Convergence

We now provide some numerical support for the results of § 7. To do this we
consider two examples.

Example 8.3. For our first example we take as initial data the exact self-similar
solution u(x, 0) = (a − 1

6x2) with unit first integral and interpolate to give Ui. A
straightforward calculation then gives the quadrature error as IN = 1− 1/(N + 1)2

so that A = −1. We then calculate the values of
Ea ≡ (1 + t)1/3(UN2 − u(0, t)),

Eb ≡ (1 + t)1/3 max |Ui(t)− u(Xi, t)|,
Ec ≡ (1 + t)1/6‖Ui(t)− u(Xi(t))‖2,

where N2 = 1
2(N + 1) and u(x, t) can be calculated exactly. These values can be

compared directly with Emid, |Emax| and EL2 given in (7.1), (7.2) and (7.3). As
Ui is close to the initial values of the discrete self-similar solution, convergence in
time to the scaled error occurs quickly, and we compare scaled errors at t = 100 for
N = 31, 63, 127. The results are given in the following and show very good agreement
between numerical and asymptotic results:

N Ea Emid Eb |Emax| Ec EL2

31 0.000533 0.000545 0.003022 0.003073 0.001334 0.001461
63 0.000134 0.000136 0.000910 0.000922 0.000335 0.000365

127 0.000034 0.000034 0.000266 0.000269 0.000084 0.000091

.
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Figure 12. A comparison of the computed scaled error and the asymptotic error.

Observe that Eb is much greater than Ea and Ec.
We can also compare the function Ei as estimated asymptotically in (7.1) with

the values of (t+1)1/3(Ui−u(Xi, t)). This is given in figure 12. Again the agreement
between asymptotics and numerical results is very good.

Example 8.4. In this example we take as initial data Ui = 1/N . For these data
we have IN = 1 so that A = 0. The form of the resulting solution u(x, t) is not
known explicitly in this case, though we do know that it converges to the self-similar
solution. Thus, for long times we can compare Ui with the self-similar solution and
calculate Ea and Eb using this. In this case we expect E1 and E2 to converge to Emid
and |Emax| as before—though the convergence will take longer. In practice, we do
not see convergence until t > 1000. The results are then very similar to those given
above.
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